Ceramic



Ceramic


    Ceramics are classified as inorganic and nonmetallic materials that are essential to our daily lifestyle. Ceramic and materials engineers are the people who design the processes in which these products can be made, create new types of ceramic products, and find different uses for ceramic products in everyday life.





  Ceramics are all around us. This category of materials includes things like tile, bricks, plates, glass, and toilets. Ceramics can be found in products like watches (quartz tuning forks-the time keeping devices in watches), snow skies (piezoelectric-ceramics that stress when a voltage is applied to them), automobiles (sparkplugs and ceramic engine parts found in racecars), and phone lines. They can also be found on space shuttles, appliances (enamel coatings), and airplanes (nose cones). Depending on their method of formation, ceramics can be dense or lightweight. Typically, they will demonstrate excellent strength and hardness properties; however, they are often brittle in nature. Ceramics can also be formed to serve as electrically conductive materials, objects allowing electricity to pass through their mass, or insulators, materials preventing the flow of electricity. Some ceramics, like superconductors, also display magnetic properties.


   Ceramics are generally made by taking mixtures of clay, earthen elements, powders, and water and shaping them into desired forms. Once the ceramic has been shaped, it is fired in a high temperature oven known as a kiln. Often, ceramics are covered in decorative, waterproof, paint-like substances known as glazes.






Ceramic processing

   Ceramic processing is used to produce commercial products that are very diverse in size, shape, detail, complexity, and material composition, structure, and cost. The purpose of ceramics processing to an applied science is the natural result of an increasing ability to refine, develop, and characterize ceramic materials.


    Ceramics are typically produced by the application of heat upon processed clays and other natural raw materials to form a rigid product. Ceramic products that use naturally occurring rocks and minerals as a starting material must undergo special processing in order to control purity, particle size, particle size distribution, and heterogeneity. These attributes play a big role in the final properties of the finished ceramic. Chemically prepared powders also are used as starting materials for some ceramic products. These synthetic materials can be controlled to produce powders with precise chemical compositions and particle size.


    The next step is to form the ceramic particles into a desired shape. This is accomplished by the addition of water and/or additives such as binders, followed by a shape forming process. Some of the most common forming methods for ceramics include extrusion, slip casting, pressing, tape casting and injection molding. After the particles are formed, these "green" ceramics undergo a heat-treatment (called firing or sintering) to produce a rigid, finished product. Some ceramic products such as electrical insulators, dinnerware and tile may then undergo a glazing process. Some ceramics for advanced applications may undergo a machining and/or polishing step in order meet specific engineering design criteria.


Properties of ceramic

    The 
properties of ceramic materials, like all materials, are dictated by the types of atoms present, the types of bonding between the atoms, and the way the atoms are packed together. This is known as the atomic scale structure. Most ceramics are made up of two or more elements. This is called a compound. For example, alumina (Al2O3), is a compound made up of aluminum atoms and oxygen atoms.


   The atoms in ceramic materials are held together by a chemical bond. The two most common chemical bonds for ceramic materials are covalent and ionic. For metals, the chemical bond is called the metallic bond. The bonding of atoms together is much stronger in covalent and ionic bonding than in metallic. That is why, generally speaking, metals are ductile and ceramics are brittle. Due to ceramic materials wide range of properties, they are used for a multitude of applications. In general, most ceramics are,

  • handwear-resistant,
  • brittle,
  • refractory,
  • thermal insulators,
  • electrical insulators,
  • nonmagnetic,
  • oxidation resistant,
  • prone to thermal shock, and
  • chemically stable

History of Ceramic

      Archeologists have uncovered human-made ceramics that date back to at least 24,000 BC. These ceramics were found in Czechoslovakia and were in the form of animal and human figurines, slabs, and balls. These ceramics were made of animal fat and bone mixed with bone ash and a fine claylike material. After forming, the ceramics were fired at temperatures between 500-800°C in domed and horseshoe shaped kilns partially dug into the ground with loess walls. While it is not clear what these ceramics were used for, it is not thought to have been a utilitarian one. The first use of functional pottery vessels is thought to be in 9,000 BC. These vessels were most likely used to hold and store grain and other foods.


   It is thought that ancient glass manufacture is closely related to pottery making, which flourished in Upper Egypt about 8,000 BC. While firing pottery, the presence of calcium oxide (CaO) containing sand combined with soda and the overheating of the pottery kiln may have resulted in a colored glaze on the ceramic pot. Experts believe that it was not until 1,500 BC that glass was produced independently of ceramics and fashioned into separate items.




    Since these ancient times, the technology and applications of ceramics (including glass) has steadily increased. We often take for granted the major role that ceramics have played in the progress of humankind. Below are just a few examples of how important ceramics are to society.


Watch more : https://youtu.be/vWz6JJ9dIdk



Post a Comment

1 Comments

  1. Awesome.These info helped me a lot to complete my school project.
    Keep it up the good work.

    ReplyDelete